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Abstract 
 
Discover how HP is applying Lean principles to drive the integration of large systems, resulting in both 
higher quality and higher productivity. 
 
In the HP printer business, Lean integration is 

 making complex programs easier to manage by providing visibility into what the product can and 
cannot do at any point in the development 

 improving the customer’s experience by making customer workflows functional and visible early 
and often throughout the lifecycle 

 reducing cost by driving synchronization of delivery across technology components 
 
This paper provides an introduction to the methods known as Lean Software and Systems Development.  
Lean is able to handle situations which are difficult to handle using the most commonly known agile 
methods, such as large, complex, and partially waterfall systems, by applying methods deriving from 
queuing theory and statistics. 
 
Lean methods are demonstrated in this paper with examples and results from actual projects in the HP 
Inkjet and LaserJet businesses.    
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Introduction 

What is Lean Product Development? 
Lean Product Development is a paradigm for developing products which views the development 
organization as a system or machine to produce profit.  Lean Product Development uses proven 
engineering, mathematical, and statistical methods to maximize the system’s output of profit by 
engineering a rapid, smooth flow of saleable features and capabilities through the development 
organization.  This is done by 

1. Modeling the work of the organization as a system to turn ideas into money.  The system model 
consists of activities and wait states or queues. 

2. Observing that unfinished work isn’t free - there is money tied up in it.   
3. Applying a body of mathematical knowledge known as queuing theory to optimize the profitability 

of the system.  This optimization requires 
o minimizing the money tied up in unfinished work 
o minimizing the operating expense 
o maximizing the output of saleable product 

 
 
Let’s look at these ideas one at a time. 
 
First, what does the work look like when modeled as a system for turning ideas into money? 
 
Lean Product Development models the development system as items moving through a series of 
activities and wait states.  Each activity takes more than zero time.  Whenever items have to wait to be 
processed through an activity, a line or queue forms, where items wait to be served. 
 
Here’s a very simple model of software development, showing four activities (the boxes) and four queues 
(the stacks waiting to be processed through the activity).   

 
 (Anderson 2004, p. 53) 
 
In this model, we can measure several things 

• Throughput = stuff of value to the organization.   “Value” means it is ready to be sold, or used to 
reduce internal costs, or otherwise immediately provide concrete value. 

• Investment = money invested in material waiting to start, in process through the system, or 
waiting to exit from the system. 

• Operating expense = money spent to run the system 
 
In order to measure anything at all, there must be discrete chunks moving through this system.  In a 
traditional waterfall development model, the entire body of work moves through the system as a single 
large chunk.  In Lean Product Development, the work is broken into smaller chunks which move through 
the system sequentially, one after another. 



 
 

 
A key difference between Lean Product Development and waterfall is that Lean Product Development 
insists that the chunks moving through the development system must be saleable features, not tasks.  
This ensures that all measurements and analysis of the system will focus on maximizing the throughput of 
saleable features and capabilities (and thus profit) rather than the throughput of tasks.
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This will sound very familiar to anyone who has worked with agile development.  I’ll explain the difference 
between agile development and Lean Product Development in a bit. 
 
Second, why does unfinished work cost money? 
 
The cost of unfinished work is easier to see in an example using physical objects.   Let’s look at a 
manufacturing line. 
 
On a manufacturing line, the system consists of a number of assembly steps, each performed at a 
different assembly station.  The partially completed items move from one assembly station to the next.  At 
each station, some parts are added to the partially-assembled item.   
 
In the old days, it was assumed that maximum output was achieved by having every assembly station 
utilized at 100% capacity - that is, running full tilt all the time.  This required having enough parts on hand 
to keep every station running regardless of what was happening at other assembly stations. 
 
This makes sense, except for one thing:  the different assembly stations don’t run at the same speed all 
the time.  The variation between stations has two results: 

 Each assembly station needs a stockpile of parts large enough to handle the fastest possible 
input. 

 Partially completed items pile up in a queue in front of the slower stations. 
 
The stockpile of parts and the partially completed items both contain parts not yet part of a saleable 
product.  This is the inventory.  The inventory ties up money in several ways. 

 Money invested in purchasing the parts  

 Owning and maintaining shelving & storage space for parts 

 Maintaining an elaborate tracking system and related processes to keep track of the multitudes of 
parts 

 Time spent by people to communicate with each other and the tracking system concerning the 
status and location of the parts 

 
Just-in-time (JIT) manufacturing practices were introduced in the 1980s to minimize this investment.  JIT 
focuses on finishing items from start to end as rapidly as possible rather than utilizing every assembly 
station 100%.  Basically, the whole system runs at the speed of the slowest assembly station.  Parts are 
pulled into a workstation just before they are needed, rather than stockpiling parts.  This means there are 
smaller stockpiles and fewer partial assemblies sitting in queues.   Using JIT, it was often possible to 
reduce the number of parts on hand at any given time by 80% or more.  [Reinertsen 1997] 
 
Because there are fewer parts sitting around, the shelf space needed was vastly reduced.  The tracking 
systems became much simpler, sometimes just a set of index cards instead of a ledger-based or 
electronic system.  The total amount of communication needed was reduced.   All this simplification not 
only made life easier, it also freed up huge amounts of cash which could be invested in other parts of the 
business. 
 
In software development, we also have an inventory of material which is not yet saleable.  The agile 
community has recognized from its start that this inventory likewise ties up money and resources.    
Software development’s inventory consists of ideas, specifications, design documents, code fragments, 
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labor or cost within the business”.  The focus is always on providing usable value. 



 
 

untested code, defect reports, etc.   Just like parts in a manufacturing process, the documents and code 
produce no profit until the final product is finished and shipped.  The software inventory is not as obvious 
because it physically exists as bits on a drive rather than parts on a shelf, but the costs are much the 
same: 

 The labor invested in developing the ideas, documents, and code 

 Owning and maintaining server space for storage 

 Maintaining configuration management, requirements management, and defect management 
databases to track the location and status of the multitudes of pieces. 

 
In addition, unlike the physical parts in a manufacturing process, the half-finished software inventory 
usually loses value over time.  The environment changes, the customers’ needs change, or the 
developers forget the details & have to reinvestigate.  If a long enough time passes, the whole thing has 
to be thrown away and done over.  
 
Third, how can queuing theory help us optimize our development system? 
 
There is a substantial body of mathematics known as queuing theory which accurately predicts the 
behavior of a system of activities & queues under various conditions – high-capacity activities, low-
capacity activities, big batches of items, small batches of items, variability in the “size” of the items (the 
amount of resources required to process the item), and so forth.  Once we’ve split our work into chunks, 
and modeled our system as activities & queues, we can apply queuing theory to speed up the throughput 
of the chunks through the system. 
 
A set of chunks of work will usually move through a system fastest when the chunks are started off one at 
a time (or a few at a time), rather than all at once.  The number of chunks in the system at any given time 
is known as the work in process or WIP.  Keeping WIP low reduces the amount of tracking and 
communication needed, just as a smaller number of parts in inventory reduces the amount of tracking 
needed.   
 
Low WIP has one other very helpful effect – it reduces the amount of task-switching.   A human being 
cannot switch from one task or topic to another for free.  The simplest switches take a few seconds.  In a 
switch between complex tasks, the worker may take as much as ten minutes to come fully up to speed on 
the second task.  The time spent task-switching is mostly wasted time.  When we have multiple projects in 
process at the same time across multiple people, the cumulative cost of task-switching and the additional 
communication needed is huge.  Cutting down the WIP is like getting free money, or more accurately, 
free hours of work.   
 
The traditional waterfall process of setting all features into motion in lockstep produces the highest 
possible WIP for the workers.  The WIP is much lower when a set of features is designed, coded, tested, 
and fixed to completion before starting the next set. 
 
Agile and Lean Product Development Compared 
 
Agile development also recognizes the value of splitting work into small, saleable chunks, and minimizing 
the amount of unfinished work in progress at any given time, and minimizing task-switching.  The main 
difference between agile and Lean Product Development is that most of the agile community explains 
why agile works in terms of heuristics or rules-of-thumb such as “the last responsible moment”, whereas 
Lean Product Development explains why Lean works in terms of a system model and queuing theory.   
Lean Product Development presents the queuing theory algorithm and shows the user how to work out 
the answer for a type of situation when it appears in their particular system. 
 
Most agile development principles or heuristics are the answer derived when queuing theory is applied to 
a small, relatively simple development system.  They are correct, for that particular type of system.   
However, when the system gets larger and more complex, application of queuing theory often leads to a 
different answer.  This allows Lean Product Development to address large, complex development 



 
 

systems clearly and systematically, whereas the agile methods often struggle with these systems.  It also 
allows Lean Product Development to be used in mixed systems, where part of the system is still waterfall. 
 
A good example of this is the practice of Continuous Integration.   Agile and Lean both agree that a short 
time between making an error and receiving feedback on the error will reduce the time needed to 
diagnose and solve the error.  A developer will more quickly find and fix a problem in code he wrote a few 
days ago as opposed to code written a few weeks or a few months ago, because there is less time spent 
remembering or re-learning the code.    
 
Since a short feedback loop saves time, should we make the feedback loop as short as we possibly can?  
In Extreme Programming Installed [Jeffries et. al. 2001, p. 78], the authors say “The extreme solution, of 

course, is to integrate as often as possible.  We call it continuous integration.  A good XP team will integrate and 

test the entire system many times per day.  Yes, many times per day.”   The authors follow this with an 
observation that this is impractical in many development systems because the build takes too long, and 
exhort the reader to reduce build time to near zero.  Continuous Integration is a heuristic. 
 
In contrast, Lean looks at the economics of the entire system, comparing cost and value.  Agile and Lean 
both agree that earlier feedback adds value.  Lean asks more questions:  How much value is added?  
How does that value vary over time?  What does it cost to add that value?   
 
Feedback on errors has an inherent value to the developer – I need to know about the error.  There’s also 
some additional value to me if I find out about the error before I forget the context, because I don’t have to 
re-learn the context and this saves me some time.  In my experience as a developer, this additional value 
of fast feedback also changed depending on the type of error reporting.  The value of feedback on coding 
errors dropped off quickly over a matter of hours, reaching zero about three days after I wrote the code.  
After that, it didn’t much matter whether I got the feedback on day 4 or day 24 – I’d forgotten the exact 
logic.  This is why compiling and unit testing immediately is so important.  The additional value of a design 
error dropped off more slowly, such that feedback within three or four days was nearly as good as 
feedback on the first day after writing the code. 
 
Now let’s look at the cost of getting this quick feedback.  Earlier feedback is usually achieved by getting 
feedback more frequently.  This means the developer has to submit code into integration more frequently.  
Depending on what the integration & subsequent feedback consists of, this submission may not be zero 
cost.   
 
For instance, suppose the developer is required to run a set of check-in tests before checking in the code.  
Routinely getting feedback on day N+1 requires checking in every day, which in turn means running those 
check-in tests every day.  This cost is not zero.   So, the additional value to the developer of quick 
feedback is offset by the cost of the check-in itself.  At some point, the check-in becomes more expensive 
than the value of the feedback.  After that making the integrations closer together doesn’t improve the 
overall system – it makes the overall system worse. 
 
The exact point at which this happens will be different for different organizations, depending on the cost of 
the check-in, and the additional value of the quick feedback.  The Lean approach to this problem is to  
1) Find the approximate optimal point and integrate that often – but not more often 
2) If the length of the feedback loop is still a significant problem for the overall system, work to reduce it.  
As the Poppendiecks say [Poppendieck 2007, p. 202], “attack the set-up time and drive it down to the point 

where continuous integration is fast and painless.” 
 
The tools of Lean Development allow you to look at a system where the cost of checking-in isn’t zero, or 
the feedback is time-consuming to interpret, or any number of other non-ideal situations, and figure out 
where the sweet spot is – the point at which overall development cost is lowest.  These are very powerful 
tools.  



 
 

 

Lean Development Applied – Product Integration at HP 
Let’s look at a real-life application of Lean Product Development to a system which is large, complex, and 
in some ways downright messy.  This is the story of our organization’s application of Lean Product 
Development, and the benefits we have derived to date. 

Starting Point – Agile Development of Subsystems, Waterfall 
Development of Systems 
Our organization was formed in early 2009 as an integration and test group serving both Inkjets and 
LaserJets.  Hewlett-Packard (HP) releases a large number of Inkjet and LaserJet products each year.  
These products consist of a great deal of sophisticated software, firmware, hardware, and allied web 
services, which are produced by dozens of individual teams.  The teams are organized into several large 
groups, each of which delivers a major subsystem which will be incorporated into multiple products.
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Most of the groups are now using some form of agile or incremental delivery. 
 
The end result of this is much like a set of conveyor belts, where each organization is delivering features 
to the central integration group.  Depending on the product line, there are three to 
seven different organizations delivering into a single integration and system test 
effort. 
 

 
 

 
 

 
 
 
 
Despite the fact that each of the subsystem organizations is independently using some form of agile 
development, the product level development still felt very “waterfall”: 

 System test started quite late.  Most features were not testable earlier than “code complete” 
because one organization or another had not yet submitted their piece of the feature.  

 Subsystem organizations would receive defects from system test  on some code well after the 
code had been “finished” from the subsystem’s perspective 

 Final release schedule was rather unpredictable.  The progress of individual organizations did not 
accurately predict the progress of the overall program.   

 There was also a hidden cost – the cost of fixing defects was higher than strictly necessary, due 
to the length of time between releasing code to integration, and the eventual receipt of defect 
reports from system testing.   
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Lines or Software Product Family style of development.  This is a large and interesting topic, but outside 
the scope of this paper.  See the reference list for references, or Google “software product lines”. 

Software organization 

Firmware organization 

Hardware organization 

Printer plus services 

 
Integration 

and System 
Test 



 
 

 
Let’s look at Project A, a typical high-end LaserJet project prior to the introduction of Lean Product 
Development. 
 
System testing consisted of running a large number of tests which examined end-to-end functionality of 
the system.  The tests were organized by capabilities or quality attributes, such as security, compatibility, 
recoverability, coexistence, and so forth.  The organization of the tests and the test execution plan both 
assumed that all the subsystems would all be delivered to system test at once, with all features functional.  
There was no easy way to identify tests for given features and run those earlier or later than the whole. 
 
Typical reporting from system test included various representations of the defect find rate (shown to the 
right) and snapshots of system test pass/fail status (shown to the left). 
 
 

 

 
Key 
Tests not yet run 

Tests failing 

Tests passing 

 
System test ran effectively for only three months of a much longer project (typically twelve months or so), 
and the bulk of defects found by system test were found in a single month near the end of the project. 
This created an extremely long feedback loop for code written near the start of the project. 
 
The traditional reporting for system test measured progress at passing a standard set of capability-based 
tests.  This didn’t tell the Marketing department anything about the status of specific new features. 
 
The newly formed system test and integration organization wanted to start system test earlier and reduce 
the length of the feedback loop.  However, other groups had tried this in the past with limited success.  A 
new approach was needed.  The system test organization decided to attempt Lean Product Development 
at the system level. 
 
Let’s look at how we did this and what happened.  

Project A     System Test Pass/Fail Project A     Defect Find Rate 



 
 

Breaking the Work into Chunks – the Slivers 
The first step in applying Lean Development principles is to break the work into chunks with business 
value. 
 
Customers don’t purchase tests.  They purchase features and capabilities which can do work for them.  
The first big paradigm shift for this group was moving from focusing entirely on tests to focusing on 
features and capabilities.   This meant we needed to re-organize our tests around the features and 
abilities in which the user was interested.  The tests were already organized by capability, but the feature 
aspect was missing. 
 
Essentially, we were looking for requirements.  Most of the subsystem organizations were using “user 
stories” and/or lists of functional requirements, either in spreadsheets or in databases.  We first looked at 
those data stores to see if we could identify useful “chunks” at a system level.  “Useful” meant: 

 saleable (have clear and understandable value to a user) 

 applicable at a system level – not specific to one subsystem 

 broad enough to avoid drowning us in millions of chunks & the accompanying overhead 
 
We found that, between the multiplicity of technologies in use, and the lack of a common method for 
identifying and storing system-level requirements as opposed to subsystem requirements, we could not 
easily identify a single consistent set of system-level requirements.   We also observed that well-written 
system-level requirements could be generic enough to be applicable to multiple related products, 
especially when a user scenario was involved. 
 
We concluded that we could best drive our test re-
organization by writing our own high-level requirements, 
leveraging off of existing system-level requirements 
whenever possible.  We decided to basically take the idea of 
a user story up one level, and define the “chunks” as a set of 
user scenarios focused on a particular type of customer 
doing a particular type of work.  The chunks are known as 
slivers. 
 
A typical set of slivers is shown to the right, for the feature 
area “Printing”. 
 
The first few slivers are “getting-started” slivers: 

 Minimum entry criteria for this feature area:  for 
instance, can the system print at all? 

 Integration slivers (usually named “framework”): do 
the various subsystems talk to each other 
successfully?  These are often gray-box tests. 

 
The rest of the slivers in this example are user scenario 
slivers, as suggested by their names.  Those usually 
comprise the bulk of the slivers. 
 
Each sliver contains in its definition: 

 A description of the customer 

 Specific things the customer wants to do 

 How we would know if the customer was satisfied 
 
 
 
 
 



 
 

Here’s the definition in a typical User Scenario sliver.    
 

Title:  Casual Photo Printing 
Customer Description: 
A user who casually prints photo content in a home or office using common photo printing applications.  
Typical usage is on standard and custom photo types and sizes.  The number of users in this sliver can 
range from one to five.  These users can exist on mixed OS platforms (i.e.; Mac, Windows) and varied 
connectivities (i.e.; USB, Wired, Wireless).  These users typically exist in an unmanaged environment. 
 
As a User I would like to print: 
1. 4x6, 5x7, and 8x10 photo prints 
2. Day-to-day family/ friends pictures 
3. Scrapbooking 
4. Facebook - Social networking sites 
5. Snapfish - Online picture storage 
 
Customer Satisfier: 
1. My photo jobs print right the first time! 
2. Image quality looks comparable to what user sees on pc. 
3. Image quality is consistent over time. 
4. Draft quality provides useful output. 

 
You may notice that the sliver isn’t very specific about the product under test.  That’s because the slivers 
are designed to be reusable across related products.   The integration and system test group typically has 
around 20 different devices in test at any given time, most of which share large sets of features with each 
other.  In addition, there are many user scenarios which are common to large groups of printers, 
particularly within individual product lines.   We decided to take advantage of the enormous overlap 
between individual printers by defining reusable slivers whenever possible. 
 
Once the slivers were defined, we had chunks of a reasonable size with clear user value.  Next, we 
needed the ability to measure completion of the chunks, which means we needed completion criteria. 
 
The completion of our slivers is defined as “passing system test” 

 A sliver cannot enter system test until all involved subsystems have delivered a version of their 
subsystem which supports this sliver. 

 A sliver cannot enter system test until all subsystems are passing earlier levels of testing at 
subsystem levels. 

 System test starts with a simple entrance test to verify that the subsystems have been 
successfully integrated and are at a reasonable level of quality. 

 The rest of system testing consists of running the tests meant to check the behavior specified in 
the slivers. 

 
Since the completion criteria included running tests, we needed tests! 
 
This is where it becomes very useful to have an integrated requirements-test management system, such 
as HP’s QualityCenter.   We wrote our sliver definitions and our test design into the requirements module 
of QualityCenter. 
  



 
 

Each sliver consists of: 
 

 A use-case type 
requirement which 
contains the definition 
of a user scenario (a 
description of expected 
user activities), as 
shown on the previous 
page.  
 

 A set of child test 
requirements stating 
how the system shall be 
tested for compliance with the use-case requirement. 
 

 The actual tests (not shown) 
 
The test requirement titles are simple statements of what shall be tested.   The body of the test 
requirement (not shown) contains more detailed test design.  Reading the titles is a very quick and 
powerful way to understand the test coverage, while putting the details of the test design in the body of 
the test requirement means we have all the test design information in one place. 
 
The tests are then written and linked to the test requirements, so we can use the test requirements to 
index the tests.   It is also possible to classify the slivers and the test requirements several different ways, 
so one can examine the coverage from different perspectives.  The slivers and their child test 
requirements are organized by user activity to maintain a focus on users, but the test requirements are 
also are indexed by quality attributes (performance, reliability, etc) so we can assess coverage in this 
dimension. 
 
Our tests had previously been stored in home-grown test management systems, which stored only the 
tests.  When we converted our tests from their earlier test-only format into this requirement-and-test 
format, we reduced the number tests by an average of 25% without reducing coverage at all, simply 
because we were able to spot duplication of coverage and outmoded tests so easily.  Other HP 
organizations have had similar results. 
 
Now we had chunks which had user-value, and we had a way of detecting when a chunk was done.  We 
were ready to start Lean Product Development – running the chunks through a development system. 
 

Setting up a Schedule – Session Planning 
Now that we had the work broken into slivers, Lean and agile principles both suggest that the least 
expensive way to deliver the slivers would be to deliver them gradually throughout the program, rather 
than all at once near the end. 
 
Most of the subsystem teams were already doing some form of agile, so the idea of delivering in chunks 
wasn’t foreign to them.  None of them had the same set of chunks, however.   We presented our slivers 
as a reasonable system-level set of chunks, which would be common to all organizations during system 
test even though they still had their own individual chunks during component and subsystem 
development.   This meant each organization had to create some sort of mapping between their chunks 
of development and our slivers.  We had around a hundred slivers at this point, many of which were 
almost entirely legacy features. 
 



 
 

The Marketing and Customer Satisfaction team members usually found that the slivers directly 
represented the features in which they were interested, and were eager to see if this method would lead 
to reporting progress of individual features.    
 
We presented the simplest possible plan to the development teams:  a linear delivery of slivers, starting 
from the time when the earliest sliver would be available for system test.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The different organizations had their own different-sized time boxes starting on different calendar dates, 
so our organization defined our own cadence of four-week cycles called sessions.  The length was based 
on the amount of time we thought it’d take to run all the system tests, allow one round of defect fixes to be 
coded and integrated into the item under test, and verify the fixes.  A four-week cycle gave a sliver a 
fighting chance to pass its tests and reach “Completed” in a single cycle. 
 
The decision of which slivers would be delivered in any particular time box was negotiated with the 
technical leads of all subsystems.  Most of the slivers included a list of “features needed from 
development before running this sliver”, so it was possible to have reasonable (although long) 
conversations about what order would best accommodate all the different subsystem teams’ needs.   
 
We prepared our “session plans” showing which slivers would be tested in which timeboxes, and the 
technical leads compared the planned output of their time boxes with our sessions and slivers.  Where 
our plan called for testing something that wasn’t developed yet, either we moved the sliver later or the 
development team swapped their order around until we had a reasonable fit.  Most teams didn’t do a 
formal mapping between their chunks of development and our slivers, so this comparison was done on 
the fly. 
 
Once we had a final “session plan” which was agreed to by all partners, we were off to the races. 
 

Monitoring Progress – the Cumulative Flow Diagram 
Because of the enormous number of people and organizations involved, it’s very easy for programs like 
these to get off track.  A key aspect of Lean Product Development, and one that proved invaluable to us, 
is the emphasis on monitoring the performance of the entire system first, and examining individual pieces 
of the system only as needed.  In our case, the entire system consists of the development teams and the 
integration & system test team.   The intent is to put saleable features on the shelves for HP, and that 
takes all of us working together. 

1) Determine the 
number of slivers to be 
delivered.  N 

2) Determine the date by which the first sliver will be 
available, and the due date for the final system. 
Split the time in between into X equal-sized timeboxes or 
cycles. 

3) Draw a straight line from 
the origin to the target point.  
This is the delivery plan:   
    N/X slivers per cycle. 



 
 

 
Lean Product Development tells you to draw a model of your system, showing activities and the flow 
between them.  The model in turn tells you what to measure in order to monitor the overall progress.  
Typically one starts with a high-level, simple model.    
 
 
 
At the highest level, the system 
looks like this:   
 
 
 
 
 
 
 
 
 
 
This simple model is monitored by a 
cumulative flow diagram (CFD), which 
shows the actual number of slivers 
completed in each cycle.   
 
Notice that we aren’t showing how many 
tests are passing – we are showing how 
many features are passing testing.  This is 
a more direct measure of the final, saleable 
output of the entire system. 
 
 
 
 
 
In this CFD, a simple extrapolation of the actual  
progress is possible after three or more 
cycles.  This extrapolation clearly shows 
discrepancies between the plan and the 
predicted actual.  
 
Any time fewer than the target number of 
slivers is delivered in a cycle, the program 
has fallen behind schedule.  The following 
cycle will need to “catch up” by delivering 
more than the target in the next cycle.   
 
So far, all the large programs where we 
used this method were behind schedule 
within the first few cycles.  Some program 
teams found this difficult to accept at first 
and argued vociferously that the 
measurements must be incorrect, while 
others said “I thought we were behind, but 
now I know how much”. 
 
 

Stuff to be worked 
on and stuff being 
worked on 

 
Completed 
work 

slivers 

A Cumulative Flow Diagram (CFD) 

CFD with extrapolation of actual 



 
 

The first step in changing the throughput of any system is to understand why the throughput is what it is.  
This usually requires a more sophisticated model than the simple model on this page.   The most 
frequently asked questions were around whether the problem was in System Test or in one of the 
Development organizations, so we broke up the first bubble in the previous model into three bubbles, 
showing the interplay between test and development. 
 
 
 
 
 
 
 
 
 
 
 
Each sliver has a status flag, which can be set to any one of the statuses shown in the model below.   
The dates on which each sliver moves from state to state are tracked in QualityCenter.  We wrote a 
program to extract the data from QualityCenter and graph it as a cumulative flow diagram. 
 
This is a typical CFD.    
 

 
With the slivers, their tests, and the CFD metrics program in place, we were ready to run a full program 
with Lean Product Development. 
 

Executed:  
Waiting for 
fix, being 
fixed, being 

re-tested 

Completed: 
Completed 
features: all 
tests pass. 

Work in 
Progress:  
Waiting for 
system test or 
in test 

Backlog:  In 
development 
– not yet 
delivered to 
system test 



 
 

 

Project B runs under Lean Product Development 
Project B is a high-end laser program similar to Project A.  We started discussing the sliver-based system 
testing with this program about half-way through its development, well before system testing would 
usually start.  The various organizations and the overarching program team were both willing to change 
their planned deliveries slightly to accommodate the sliver model.   
 
As usual, the teams were eager to start system testing early.  However, during the first 4-week session of 
system test, almost no slivers passed all their system tests. 
 
A quick look at the defects found per test in the first session explained what was going on.   The first 
session starts with an entrance or acceptance test suite, assessing the capability of the system to be 
system-tested.   Nearly every test run in this suite discovered a defect, many of which were attributed to 
necessary code not having been delivered to system test.   
 
This may sound silly – unknowingly testing features which haven’t been completed – but remember that 
these teams had been waiting until all features were complete before running these high-level system 
tests for any feature.  Up to this time, there hadn’t been a need to track exactly when all the work 
pertaining to a particular feature was completed across dozens of individual teams, so there wasn’t a 
good high-level tracking system in place.  Informal tracking didn’t work well because the work could be 
spread across three separate organizations comprising hundreds of people. 
 
 Once the short entrance suite had been run, the test manager looked at these results and stopped the 
system testing.  This forced the development organizations to discuss among themselves how they would 
know when a feature was ready to test, and they quickly improved their ability to track this.   Stopping the 
testing also saved a good bit of money which would otherwise have been wasted on running tests which 
would repeatedly report that the same features weren’t finished. 
 
In the next cycle, a number of slivers were ready to test and the testing proceeded, finding and reporting 
useful defects to the various development teams.  The bulk of the issues quickly changed from un-
delivered functionality to mostly defects.  The test leads showed the CFD every week to the leads of the 
various development teams. 
 
 Things proceeded along for some weeks.  Each week, the test leads reported which slivers weren’t 
completed as planned, and what needed to be delivered from R&D in order to close these particular 
slivers.  The CFD slowly showed a divergence between the plan and the extrapolation of the actual, 
indicating that the program was falling behind schedule.    
 
 
 



 
 

 
 
On May 30, the sliver CFD showed: 

 The rate of slivers delivered into system test (solid line) is a little higher than the rate of slivers 
finishing the first round of system test (dotted line).     
         This means that testing is not quite keeping up with development. 

 The rate of slivers finishing the first round of system test (dotted line) is higher than the rate of 
slivers entering the Completed state (dashed line).   
         This means the fixing and re-testing isn’t keeping up with either development or testing.    

 The extrapolation of the Completion rate crosses the Target Release vertical line well below the 
target number of requirements 
         This means that the last sliver isn’t going to complete until well after the target MR date. 

 
Examining the open defects, it was obvious that the main problem was a large number of unfixed defects.  
The program manager was now monitoring the status of hundreds of defects, some of which were more 
than two months old.    The program manager needed to track when they would be fixed, but also: 

 What else is this defect blocking? 

 What parts of the system are affected? 
 
Even a couple dozen such defects is quite a lot to carry in your head.  We found that the association of 
defects with slivers made it much easier for the program manager to understand and remember what was 
blocked and what was affected.    Monitoring the status of slivers, rather than tests per se, also allowed 
the teams to target groups of defects which were blocking or affecting the same area of the system, and 
get the area sufficiently fixed to allow system testing to take place.   This reduced the overall complexity 
of managing the project. 
 
Of course, the reduction in complexity, while pleasant, didn’t fix the divergence between planned and 
actual.   The program was still behind schedule.  The program team started to say “we need to see a 
hockey stick” in the CFD – that is, a sudden and sustained turn upwards.  As usual, saying it didn’t make 
it happen.  After a couple of weeks of watching the growing divergence between the planned and actual, 
the program teams decided to take action.  They stopped working on new features for a full week and 



 
 

spent all their effort on fixing defects.  The defect fix rate spiked sharply, but what we were really watching 
for was the hockey stick in the CFD – and sure enough, it appeared. 
 
 

 
 
The large collection of defect fixes allowed a substantial number of slivers to re-enter testing and 
complete almost immediately.  With the backlog mostly gone, defects found in subsequent slivers were 
fixed more quickly and the more rapid progress rate was sustained through the next months. 
 

The End of Project B 
 
As Project B nears its end, it is apparent that we didn’t really achieve a smooth, linear delivery of features 
over the length of the project.   
 
 
This chart shows tests 
executed by session in 
Project B.   
 
Clearly the testing wasn’t 
evenly spread throughout the 
seven months of system test. 
 
 
 
 
 
 
 
 
 

“hockey stick” 



 
 

However, we did see a very substantial change in feedback time between Project A and Project B.  As 
seen in the defect discovery timeline, Project B started system test seven months before final release, 
compared to Project A which started three months before final release.  This is definitely a substantial 
improvement in feedback time, since some developers received feedback three to five months (not 
weeks) earlier than they did in Project A. 
 

 
 
 

Conclusion 
We’ve really just begun our transition to Lean Product Development.  The initial steps of the transition 
were quite costly, since we had to reorganize our system tests around features (as opposed to 
capabilities), and organize them in a way that would correspond to recognizable user stories, and 
organize them in a way that would not require enormous changes in the order in which work was done in 
each of the numerous subsystem teams.   However, we got some immediate benefit due to the 25% 
reduction in the number of tests, so we had some time and resources to use on the transition. 
 
Now that we have the foundation built and have started using Lean methods, we find that we can: 

 Start system testing three to four months earlier than previously, thus cutting feedback time 
dramatically for half the defects. 

 Show convincingly and credibly that a program is behind schedule and the improbability of 
catching up while still doing everything the same. 

 Allow a program manager to understand quickly what features are blocked by which defects and 
thus simplify managing the program. 

 Convince a program team to stop coding and fix for a week, despite the huge inertia inherent in 
large groups of teams. 

 
However, we haven’t yet started applying Lean to a program early enough to result in an efficient and 
well-understood order of development and integration across all the many subteams.  We need to work 
out the order in which slivers will be delivered much sooner, near the very beginning of the program.    
This will provide a framework for the subsystem teams to align with each other and plan to deliver some 
features in full much earlier.   
 
We’re optimistic about achieving radical improvements in productivity next year as we continue to 
implement the Lean Product Development methods.    
  

Project A Project B 
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In Case You Wondered.... 
Lean Product Development isn’t identical to Lean Manufacturing.  They both use the same fundamental 
concepts from queuing theory, but manufacturing deals mainly with predictable tasks of similar sizes and 
relatively low variability, whereas product development deals with tasks which are inherently variable and 
dissimilar.  Since the nature of the tasks is different, the application of queuing theory sometimes leads to 
different answers for Lean Manufacturing and Lean Product Development.  For more on this subject, see 
Reinertsen 2009. 
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